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It is shown that infrared phenomena in the gauge theories are guided by certain classical solutions of the Yang- 
Mills equations. The existence of such solutions can lead to a finite correlation length which stops infrared catastrophe. 
In the present paper we deal only with theories with a compact but abelian gauge group. In this case the problems of 
correlation length and charge confinement are completely solved. 

It was pointed out by different authors [ 1 ] several 
years ago that the infrared phenomena, occurring with 
a gauge field, might provide a natural explanation for 
the confinement of  quarks. At the same time there 
exist no methods for analyzing the interaction of  gauge 
fields in the deep infrared region. It is the purpose of  
the present paper to work out a formalism which per- 
mits, at least partly, to take into account the infrared 
effects in gauge-field interactions. Our main idea is 
that the system of  gauge fields acquires a finite corre- 
lation length through the following phenomenon. 

Imagine that we are calculating a certain correlation 
function in the euclidean formulation of  the gauge 
theory. This means averaging over all possible fields 
A~ with the weight equal to: 

/ ' / exp {-S(A)}  = exp - ~g2  (1) 

Fur = auA v - OvA u + [Au,Av]  . 

Assume that the charge g2 ,~ 1; then the leading role 
in the averaging will be played by the fields close to 
that defined by the equation: 

8S 
 sT (x) - 0; s[ l < oo. (2) 

Usually one takes into account only the trivial min- 
ima of  S, i.e. A u = 0, and developes the perturbation 
theory as a small deviation from this. For the correla- 
tion function with the distance R the parameter of  the 
perturbation expansion is g2 log R/a where a is the in- 
verse cut-off. Hence, for very large R, perturbation 
theory is not applicable and another,4 might become 
essential. Indeed, though the weight with which non-" 

trivial minima enters the averaging is small being pro- 
portional to 

exp (-S(~T)} = exp ( -E /g  2) (3) 

(where E is certain constant) their influence on the cor 
relation is large if the classical field A is long ranged. 
(In fact, the contribution to the correlation will be 
shown to be proportional to ex_p { - E / g 2 } R 4 ) .  

Now assume that the fieldsA u are such as if they 
were produced by certain "particles" in the four-di- 
mensional euclidean space. In other words there exist 
the "one-particle" minima of  S, the "two-particle" and 
so on. Of course, the "energy" E depends on the num- 
ber of  the above mentioned pseudo-particles. The aver- 
age density of  pseudo-particles in our system is very 
small, being proportional to exp( -E /g2) .  However, 
their existence creates long range random fields in our 
system. Due to these random fields, the correlation 
length becomes finite. This is precisely the phenomena 
we are going to investigate. 

The above discussion was based on the crucial as- 
sumption that there exists pseudo-particle solutions of  
the gauge field equations. It will be proved in the sec- 
ond paper of  this series that such solutions indeed 
exist for every compact nonabelian gauge group. 

In this first paper we confine ourselves to the prob- 
lem of  realizing the above program in the case of  com- 
pact but abelian gauge fields. The purpose of  this con- 
sideration is two fold. First, it is a good and simple 
model for trying our program on. Second, the com- 
pactness of  quantum electrodynamics seems to be an 
attractive hypothesis and our results may have physical 
applications. For example we shall prove the existence 
of  a certain critical charge in QED. 
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The definition of the theory is as follows. Let us 
introduce a lattice in the four dimensional space, nec- 
essary in the definition of functional integrals. Gener- 
ally, the action should have the form: 

S = ~ f(Fx,uv) (3) 
X,#,~' 

Fx,uu =Ax,u +Ax+au,u - Ax+au,u - A x , u  

where a u is lattice vector, 

f(x) 1 x2" 
x~0 4g 2 

The hypothesis of the compactness of the gauge 
group means that Ax,v. are the angular variables, and 
the group is the circle and not the line. This is equiva- 
lent to the hypothesis that: 

f (x  + 21r) = f(x). (4) 

Gauge theories on the lattice have been considered 
earlier by Wilson [2] and the present author (unpub- 
lished). See also [3]. 

The immediate consequence of the periodicity of 
f(x)  is that the nearest neighbours Ax+ax,u and Ax, u 
can be different by 2nN (where Nis  integer) without 
producing large action. Hence, in the continuous limit 
Fuz , may have the following singularities: 

Fu u (x) = Freu + 2rt ~Niu~,. 6 (SO(x) (5) 
[ 

where 5(S)(x) is the surface 6-function. The second 
term in (5) will not contribute to the action, due to 
the periodicity. 

It will be convenient for us to analyze first the 
three dimensional theory. In this case there exists 
quasiparticle solutions of Maxwell equations which 
simply coincide with the Dirac monopole solution. If 
we introduce the field: 

F~ - 1  7 eat~ FO~ (6) 

then the general pseudo-particle solution will be given 
by: 

(x- xD,  
Fa = ~a qa2 I x - x a [  3 (7) 

- 2~r6~3 ~ qaO(x3 - x 3 a ) 6 ( x - x l a ) 8 ( x  - x2a ). 

If { qa} are integers then the singularities in (7) are 
just of the permitted type. 

The action is given by: 

S(A) = E/g 2 
(8) 

E =-~ ~ qaqb 

(the value of the constant e depends on the lattice type 
and is not essential for us). 

Now let us analyze the correlation function intro- 
duced in [2] which is most convenient in the confine- 
ment problem: 

F(C)=exp{-W(C)}  = (exp {i§A u dxu} ) (9) 
¢ 

(here C is some large contour). 
For the evaluation of (9) let us substitute Au 

= .4~ + a u. Since the integral over a u is gaussian we get: 

exp {-S(A)} exp{i§A u dx u} 
F(C) = Fo(C ) Z exp (-S(A))  (10) 

(Here F o is the contribution o fA  = 0). 
The sum in (10) goes over all possible configurations 

of pseudo-particles. Now, let us use the formula: 

exp {i §A u dxu } = exp {i f Fc~ doc~ } (11) 

in which, due to the periodicity of the exponent, only 
the first term from (7) should be substituted. 

The problem is reduced now to the calculation of 
the free energy of the monopoles plasma with the 
"temperature" g2 in the external field: 

__~ f. clo~. (12) 
~0e(x) = i ax,~ " i x  - yl" 

This problem was solved by using Debye method 
which is correct for sufficiently small g2. The result is 
two fold. First, there exist the Debye correlation 
length and the corresponding photon mass m equal to: 

m 2 = exp{-e /g  2 } (13) 

(in the units of the inverse lattice length). 
Secondly: 

W[C] = const(g2mA) (14) 

where A is the area of the contour C. Eq. (14) was 
derived for arbitrary planar contour. According to' 
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Wilson [1 ] this result means "charge conf'mement" in 
the three dimensional QED with the compact gauge 
group. 

In the case of  the four dimensional QED it can be 
shown that the only classical solutions with finite ac- 
tion are closed rings. This follows from the fact that 
singular points in this case should form lines. To prove 
this, assume that it is not  so, and consider the pseudo 
particle solution with x = 0. Consider the cube K with 
x 4 = 0. Then it should be: 

§Fur dour = 27rq (15) 

But, after small variation of  the x 4, our pseudo-particle 
will be outside the cube, and this contradicts (15). 

Since the closed rings produce only dipole forces 
their influence on the correlation are rather weak. We 
showed that in this case the correlation length remains 
infinite and that 

W[C] = const exp(-B/g2).L (16) 

where L is the length of  the contour C, and B is some 
constant. This result means the absence o f  the charge 
confinement for smallg 2. Since it was proved in [2] 
that for large g2 the charge confinement exist there 
are some critical charge g2 at which the phase transi- 
tion occurs. It is not  clear now whether this critical 
charge is connected with the fine structure constant. 

The extension of  the above ideas on the nonabelian 
theory will be presented in the other papers of  this 
series. 
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